Terahertz time-gated spectral imaging for content extraction through layered structures

نویسندگان

  • Albert Redo-Sanchez
  • Barmak Heshmat
  • Alireza Aghasi
  • Salman Naqvi
  • Mingjie Zhang
  • Justin Romberg
  • Ramesh Raskar
چکیده

Spatial resolution, spectral contrast and occlusion are three major bottlenecks for non-invasive inspection of complex samples with current imaging technologies. We exploit the sub-picosecond time resolution along with spectral resolution provided by terahertz time-domain spectroscopy to computationally extract occluding content from layers whose thicknesses are wavelength comparable. The method uses the statistics of the reflected terahertz electric field at subwavelength gaps to lock into each layer position and then uses a time-gated spectral kurtosis to tune to highest spectral contrast of the content on that specific layer. To demonstrate, occluding textual content was successfully extracted from a packed stack of paper pages down to nine pages without human supervision. The method provides over an order of magnitude enhancement in the signal contrast and can impact inspection of structural defects in wooden objects, plastic components, composites, drugs and especially cultural artefacts with subwavelength or wavelength comparable layers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters.

Multi-spectral imaging systems typically require the cumbersome integration of disparate filtering materials in order to work simultaneously in multiple spectral regions. We show for the first time how a single nano-patterned metal film can be used to filter multi-spectral content from the visible, near infrared and terahertz bands by hybridizing plasmonics and metamaterials. Plasmonic structur...

متن کامل

Polaritons in layered two-dimensional materials.

In recent years, enhanced light-matter interactions through a plethora of dipole-type polaritonic excitations have been observed in two-dimensional (2D) layered materials. In graphene, electrically tunable and highly confined plasmon-polaritons were predicted and observed, opening up opportunities for optoelectronics, bio-sensing and other mid-infrared applications. In hexagonal boron nitride, ...

متن کامل

Identification of high explosive RDX using terahertz imaging and spectral fingerprints

We experimentally investigated the spectral fingerprints of high e xplosive cyclo-1,3,5trimethylene-2,4,6-trinitramine (RDX) in terahertz frequency region. A home-made terahertz time-domain spectroscopy ranging from 0.2 THz~3.4 THz was deployed. Furthermore, two sample pellets (RDX pellet and polyethylene pellet), which were concealed in an opaque envelop, could be identified by using terahertz...

متن کامل

Terahertz imaging for non-destructive evaluation of mural paintings

The feasibility of applying time-domain, terahertz spectroscopic imaging to the evaluation of underdrawings and paint layers embedded within wall paintings is demonstrated. Metallic and dielectric paint patterns and a graphite drawing are resolved through both paint and plaster overlayers using a pulsed-terahertz reflectometer and imaging system. We calculated the bulk refractive indices of fou...

متن کامل

3D Chemical mapping using terahertz pulsed imaging

We report the use of a terahertz pulsed imaging technique for three-dimensional chemical mapping. Terahertz radiation reflected from a sample was measured pixel-by-pixel in time domain using a terahertz pulsed imaging system developed at TeraView Ltd, UK. The recorded terahertz waveforms were then transformed into frequency domain using time-partitioned Fourier transform. Structural maps of sam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016